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g – General Intelligence 
 
 
Although there is still no standard definition of ‘intelligence’, there are strong 
similarities between informal definitions, and the psychometric construct g can be 
defined with precision. The following definitions are from Legg and Hutter (1).  
 
The cognitive scientist Mike Anderson defines general intelligence as: 
 

“. . . that facet of mind underlying our capacity to think, to solve 
novel problems, to reason and to have knowledge of the world.”  

 
An op-ed statement signed by fifty-two intelligence researchers extends this 
definition to include learning efficiency and being ‘switched on’ or having situational 
awareness: 
 

“A very general mental capability that, among other things, 
involves the ability to reason, plan, solve problems, think 
abstractly, comprehend complex ideas, learn quickly and learn 
from experience. It is not merely book learning, a narrow 
academic skill, or test-taking smarts. Rather, it reflects a broader 
and deeper capability for comprehending our surroundings —
"catching on," "making sense" of things, or "figuring out" what to 
do.” 

 
From an applied approach comes and emphasis on productivity, captured by:  
 

“An intelligence is the ability to solve problems, or to create 
products, that are valued within one or more cultural settings.” H. 
Gardner 
 

“. . . I prefer to refer to it as ‘successful intelligence.’ And the 
reason is that the emphasis is on the use of your intelligence to 
achieve success in your life. So I define it as your skill in achieving 
whatever it is you want to attain in your life within your 
sociocultural context” R. Sternberg 

http://www.vetta.org/documents/A-Collection-of-Definitions-of-Intelligence.pdf
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From the artificial intelligence (AI) movement comes an emphasis on efficient goal 
achievement, captured in these definitions: 
 

“Achieving complex goals in complex environments.” B. Goertzel 
 
“Intelligence is the ability to use optimally limited resources – 
including time – to achieve goals.” R. Kurzweil 

 
 
General intelligence can also be defined as g - a statistical construct developed in 
psychometric testing to account for the positive correlations (‘positive manifold’) 
found between a broad range of cognitive tasks - from reasoning to general 
knowledge to processing speed to creativity, self-regulation and attention control (2) 
– not just those found in psychometric full scale IQ tests. 
 
At Cambridge Mindware Lab we use g as our working definition for intelligence.  

 
The Brain Training Goal: 

Far Transfer to g 

  

Brain training apps developed by scientists are intended to result in the transfer of 
performance gains on the training exercise itself to g-related cognitive skills that are 
useful to you in real life. 
  

This kind of transfer from training is called far transfer. 
 
Many brain training apps on the market only result in near transfer: you improve 
skills specific to the exercises you train with, but this does not help you with more 
general-purpose g-related skills in everyday life. 
 
 

 
Far transfer examples 

https://www.researchgate.net/profile/Kevin_Mcgrew3/publication/222567330_CHC_theory_and_the_Human_Cognitive_Abilities_Project_Standing_on_the_shoulders_of_the_giants_of_psychometric_intelligence_research/links/59e622abaca272553f68720f/CHC-theory-and-the-Human-Cognitive-Abilities-Project-Standing-on-the-shoulders-of-the-giants-of-psychometric-intelligence-research.pdf
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Real World g Functions 

  

 
Effective far transfer brain training can target any of the 5 types of g-related 
cognitive function shown in this figure:  
 

 
  

i.  Fluid Intelligence (Gf)  

• Comprehending & understanding 

• Problem solving & reasoning 

• Strategic planning & decision-making 

• Learning efficiency 

ii.  Crystallized Intelligence (Gc) 

• Store of knowledge, skills strategies, & experience in long-term memory 

• Ability to use the above in appropriate contexts 

iii. Cognitive Control (CC) & Self-Regulation (SR) 

• Attention focus & flexibility 

• Will power 

• Control and regulation of emotions 

• Ability to conduct sustained practice & training 

• Ability to establish new habits or break old ones 

• Goal pursuit, choice-making and autonomy 

iv. Creativity   

• Divergent thinking 

• Creative problem solving 

• Creative strategizing & decision-making 

• Inventiveness / entrepreneurship 
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v. Flexibility, Adaptiveness & Situational Awareness 

1) Attentional & cognitive flexibility 

2) Situational awareness 

3) Ability to disengage from goals, set switch and adapt to new environments 

4) Ability to adapt strategies to face new and unexpected conditions. 

Supporting these g-related functions, and playing a fundamental role in intelligence: 

• Working memory: This is your ‘mental workspace’ that maintains the 
information you need for the current context and cognitive task – whether you 
are comprehending, reasoning, problem solving, learning or planning – while 
not losing track from distractions. Working memory is required to mentally 
relate, integrate, and recombine information. Following a conversation in a 
foreign language puts high demands on working memory, as does difficult 
mental arithmetic or planning the optimal route through a city during rush 
hour traffic. WM capacity (or span) is the ‘bandwidth’ of this workspace – 
like how much RAM a computer has.  
 

 
 

• Strategic metacognition: This is your ability to manage your own 
‘cognitive resources’ flexibly and adaptively to multi-task efficiently, to 
strategically change responses based on priorities, and make use of speed-
accuracy and cost-benefit trade-offs, as well as to notice relevant contexts to 
apply your training or learning. It depends in part on your own self-awareness 
of your own cognition – called metacognition. 
 

• Cognitive resilience: This is your ability to maintain optimal working 
memory, attention focus and intelligent cognition in the face of fatigue, stress 
or other emotional pressures. 
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Effective Brain Training 
 

In published research you often hear about a brain training study showing a 
statistically ‘significant’ result. But significance alone doesn’t tell us about how 
effective the training is –how much of an impact it has on IQ test scores for 
example. For this we need the effect size. 
 
The effect size is quantified in a statistic that can be converted to standardized 
points. An effect size of 1.0 = 15 standardized points. So a brain training program 
with an effect size of 1.0 is expected to result in a post-training gain of 15 points; a 
training program with an effect size of 0.5 results in a post-training gain of 0.5 x 15 = 
7.5 standardized points. 
 
 

Effectiveness of the Dual N-Back Game 
 

What is the scientific consensus on effect sizes for the most widely 
tested brain training games? One of these is the dual n-back (DNB) 
– a working memory brain training game. 
 
The latest meta-analysis that combines the data of all 33 
published, randomized, controlled DNB trials from independent 
labs around the world (3) reveals there are far-transfer training 
effects for: 
 
● Working memory (Gwm) 
● Fluid intelligence (Gf) 
● Cognitive Control 
 
 

 

 
Effect size data from Soveri et al, 2017 

https://link.springer.com/article/10.3758%2Fs13423-016-1217-0#Sec1
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Dr Au and colleagues’ earlier 2015 meta-analysis also found the same effect size of 
DNB training on fluid reasoning (4). This team concluded: 
 

“the results reported in this meta-analysis represent a low-end 
estimate of the true extent of improvement that n-back training 
can have on measures of fluid intelligence.”  

 
Note: The DNB effect sizes for visuospatial fluid reasoning (Gf) and working 
memory (Gwm) – both measures of IQ - are approximately double what you get with 
Lumosity training for a similar duration (5).  
 

 
 
How do these effect sizes 
compare with other well-
known interventions? The 
effect size for working 
memory capacity (Gwm) is 
0.24. This is the same effect 
size as that of commercial 
antidepressants such as 
Fluoxetine (Prozac) in 
treating depression (6).  
 
Certainly a lot of money is 
invested into developing 
anti-depressants! If research 
reports far transfer effects of 
0.2 or higher, this is worth 
your attention. Many 
pharmaceutical drugs have 
effect sizes in the 0.2 to 0.4 
range.  
 
 

But still, we are only looking at gains of 2 to 4 standardized points from DNB 
training! The effect sizes are small as conventionally understood: 
 

Small effect = 0.2 
Medium effect = 0.5 
Large effect = 0.8 

 
Traditional cognitive training just isn’t resulting in the far transfer benefits for g that 
we are looking for. Brain training should be striving for effect sizes of 0.5 or higher – 
ideally at least 10 standardized points.  
 
Enter the gCODE and gCODE+ training paradigm. 
 

 
 

https://www.ncbi.nlm.nih.gov/pubmed/25102926
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134467
https://sciencebasedmedicine.org/antidepressants-and-effect-size/
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Paradigm Shift: 
Key Training Principles 

 
A paradigm shift is needed. We need a new set of principles around which to build 
brain training apps and programs in systematic ways to achieve medium to large 
effect sizes. 
 
I have converged on a number of evidence-based principles that have emerged with 
good consistency in published research over recent years. The gCODE model for 
brain training is built from these key principles (P1 – P7): 
 
 

P1. Network Hubs  
 
Some brain regions are highly connected, acting as flexible network hubs. These 
have a central role in supporting integrated brain function. Domain general, 
integrated brain function is clearly needed far transfer (7).  Thus, any effective brain 
training program needs to be designed to target the brain’s network hubs. In this 
diagram, the ‘modules’ are the frontal, parietal, temporal and occipital cortical lobes 
of the brain. The nodes and edges are brain regions and their network connections. 
The red hubs are the types of regions brain training should target for far transfer. 
 

 
 

From Guixiang Ma et al., 2017 
 
 
 
 

https://www.sciencedirect.com/science/article/pii/S1878929318301397
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P2. Executive Control Networks & Core Functions  
 
Humans have a unique ability to envision outcomes and carry out actions to achieve 
them. Our capacity to manage goal-directed behaviours, counter to habit or amidst 
competing action-choices, is termed executive control1. Executive control has a 
close dependency on the frontal lobe and its associated working memory networks 
(8, 9). 
 
At Cambridge Mindware Lab we develop apps that target executive control networks 
and their associated executive functions (EFs). 
 

Executive functions: a broad collection of higher-order 
cognitive functions that allow individuals to flexibly regulate their 
thoughts and actions in the service of adaptive, goal-directed 
behavior.” (10)  

 
(i) Frontoparietal Networks: Attention Control & Working Memory 
Maintenance   
 
The frontoparietal control network (FPCN) is a flexible hub that coordinates 
processing across other brain networks in an adaptive, goal-dependent way (11, 12).  
 
 

 
 

From the Cole and colleagues’ Flexible Hubs model of the FPN 
 
Different zones within this frontoparietal network fractionate into two attention and 
working memory (WM) maintenance networks, allowing us to temporarily 

 
1 Also known as ‘cognitive control’. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
Miyake,%20A.,%20&%20Friedman,%20N.%20P.%20(2012).%20The%20Nature%20and%20Organization%20of%20Individual%20Differences%20in%20Executive%20Functions:%20Four%20General%20Conclusions.%20Current%20Directions%20in%20Psychological%20Science,%2021(1),%208–14.%20https:/doi.org/10.1177/0963721411429458
https://www.frontiersin.org/articles/10.3389/fpsyg.2014.00390/full
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758404/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873155/
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store task-relevant contextual information over time while inhibiting distractors or 
automatic responses (13): 
 

Frontoparietal Control Network B (FPCNB): WM maintenance in 
moment-by-moment sensorimotor interactions with the environment. FPCNB 
is connected to the dorsal attention network (DAN) and contributes to 
cognitive control by flexibly encoding perception-action task rules and their 
relationship to expected reward outcomes in working memory. With top-down 
control over the DAN, FPCNB ensures that attention can shift between task-
relevant information, rather than salient, yet irrelevant stimuli, or task-
irrelevant thoughts. 
 

 
 
Frontparietal Control Network A (FPCNA): Working memory 
maintenance for the regulation of introspective ‘offline’ processes - free from 
sensorimotor interactions with the environment. It has strong links with the 
default mode network (DMN), hippocampus & parahippocampus. It plays a 
role in bringing conceptual–associative knowledge and episodic experience to 
bear on working memory. It is involved in metacognitive awareness, 
multitasking, mentalizing, temporal planning; also relational reasoning and 
abstract thinking. 
 

 
 

https://www.pnas.org/content/115/7/E1598
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In short, the FPCNB network is for online sensorimotor control (e.g. improvising with 
an instrument or playing sport), the FPCNA is for offline introspective/thought 
control (e.g. mathematical reasoning or planning). 
 
WM maintenance in these frontoparietal networks may depend on gamma wave 
(35+ Hz) and theta wave (4-8 Hz) synchronization where circuits of neurons all 
oscillate together. Different memories items (e.g. perception-action rules) in WM 
may be encoded by gamma waves with different phases in the slower theta wave 
which keeps repeating itself during WM maintenance. Working memory capacity on 
this model is the number of distinct gamma-coded items in the theta wave (14, 15). 
 

 
 

 
(ii) Corticostriatal Networks: Working Memory Input Gating (Updating) 
and Output Gating 
 
Working memory needs both the ability to stably maintain information in the face of 
distractions, but also flexibly select from and update its contents (16).  

Input gating 

WM networks have input gates that enable context-sensitive updating. When these 
are open, newly relevant information can flow in; when these are closed, information 
is maintained and shielded from distraction. For example - if you are watching a 
movie and someone shouts that it’s your turn to have a shower, you need to update 
the contents of your working memory (current scene, plot line, related to the movie) 
with a shower-related mental-set (what you need to do to have a shower and get 
clean). This updating of your current goal and mental set requires input gating. 

https://www.cell.com/current-biology/pdf/S0960-9822(10)00447-1.pdf
https://www.pnas.org/content/115/5/1117
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692183/
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Professor Tod Braver (a fellow grad student) has shown that the input gate is opened 
via dopamine signals from the striatum (basal ganglia) to the pre-frontal 
cortex of the frontoparietal networks where the information is updated (17). 

Output gating 

Not all information that you are keeping in mind in the mental workspace of WM 
may be relevant to what you are currently need to do. For example, when showering 
you may have the long-range goal to get clean in mind, while also all the steps needed 
to get clean (wash hair, wash face, etc), but you only need deploy one step in WM at a 
time.  
 

 
Adapted from Badre & Nee, 2018 (18) 

 
This kind of selection and management of workspace information for ‘downstream’ 
processing depends on output gating from working memory (18). 
 

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.319.9438
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
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Output gating is important for both intelligent action selection via the FPCNB and for 
inference and abstraction of higher order rules and associations via the FPCNA (16, 
19, 20, 21) needed for: 
 

• Applying complex rules 

• Decision making 

• Planning 

• Learning and generalization 

• Complex reasoning 
 
WM output gating is critical for fluid intelligence involving reasoning and concept 
abstraction.  
 
Studies have shown that WM output gating depends on very similar cortico-striatal 
(dopamine-signalling) networks as WM input gating (19). 
 
Input and output gating may depend on synchronized Alpha/Beta frequencies (8-35 
Hz) in deeper layers of cortex, allowing information to enter or exit active 
maintenance in WM (35+ Hz Gamma frequencies) in more superficial layers cortex 
(15). Maintenance could also depend on slow wave theta waves as described above. 
 
 

 
 

Bastos and colleagues’ (2018) model of working memory (15) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692183/
https://www.sciencedirect.com/science/article/pii/S0896627314000063
https://academic.oup.com/cercor/article/22/3/527/325808
http://www.cog.brown.edu/research/badrelab/papers/Unger_Ackerman_Chatham_Amso_Badre_gating.pdf
https://www.sciencedirect.com/science/article/pii/S0896627314000063
https://www.pnas.org/content/115/5/1117
https://www.pnas.org/content/115/5/1117
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(iii) Multiple Cortico-Striatal Loops: Multiple WM Workspaces for 
Hierarchical Control 
 
All intelligence-demanding tasks we do in everyday life have a complex 
hierarchical structure with multiple levels of goals over different timescales (18). 
Taking a shower involves holding a long-range abstract goal in mind (getting clean), 
while going through a number of concrete perception-action steps (wash hair, wash 
face) to get there. Analogously, a child can manage multiple rules like <library -> soft 
voice> and <playground -> whatever> (1st order abstraction) as well as multiple 
higher order contexts, such as <parent present> or <no parent present> (2nd order 
abstraction) that the lower order rules depend on, as shown in this figure: 
 
 

 
From Badre & Nee, 2018 (18) 

 
 
Fluid intelligence demanding processing for problem solving, comprehension or 
decision-making typically involves shifting attention through some problem space 
with a hierarchical structure with different levels of ‘policy abstraction’ like this, as 
shown in this figure: 
 

 
 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
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The research tells us that multiple WM workspaces can be input/output gated 
and maintained separately by different network hubs depending on (i) the type of 
control (sensory–motor or introspective) and (ii) the level of abstraction (1st or 2nd 
order abstraction) and (iii) modality (verbal/spatial/episodic) of content to be 
monitored. Generally, the more abstract and domain-independent the WM content, 
the more rostral (towards the front of the brain), and the more domain specific and 
concrete, the more caudal (towards more downstream regions of the brain) (18, 22, 
23). Illustrated below is Badre and Nee’s Corticostriatal Model for Hierarchical 
Control where you can see the nested look structure, enabling gating for multiple 
levels (18). 
 

 
Badre & Nee’s Corticostriatal Model for Hierarchical Control 

 
 
Working memory capacity (WMC), as measured by complex span tasks, is thus a 
complex construct with multiple buffers or stores, each of which has limited capacity. 
 
More rostral (prefrontal) higher order WM loops may be more continuous with 
semantic long-term memory, explaining why higher-level abstraction may aid in 
memory encoding or recall (24). 
 
(iv) The Cingular-Opercular Network & Inferior Frontal Junction: 
Disengaging, Interference Control and Mental Set Shifting 
 
The Cingular-Opercular Network (CON) – including an Anterior Cingulate Cortex 
network hub - interacting with the FPN networks via a common network hub called 
Inferior Frontal Junction (IFJ) enables us to shift between different task sets or rules 
without interference between them. It functions to prevent proactive interference 
(mental stickiness) by disengaging from previous rule-sets, associations and 
memories that are no longer relevant to the task. (25, 26). Neural mechanisms of 
interference control underlie the relationship between fluid intelligence and working 
memory capacity (27). 
 

(v) Dorsomedial Salience Network:  Mapping What’s Important for WM 
 

There is a lateral-medial (towards the side - towards the middle) organization in 
cortex, with lateral networks involved in working memory content and medial 
networks involved in motivation and emotion (18). The lateral frontoparietal 
networks (FPCNA and FPCNB) interact strongly with medial prefrontal cortex - 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/#R117
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/#R93
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
https://www.frontiersin.org/articles/10.3389/fnagi.2017.00033/full
https://psycnet.apa.org/record/2017-55919-001
https://www.functionalneurology.com/materiale_cic/6_XIX_2/32_impairment/index.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3930174/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841250/
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specifically the Salience Network with hubs including the dorsal anterior (upper-
frontal) cingulate cortex (dACC), the pre-Supplementary Motor Area (pSMA), the 
anterior insular cortex and the amygdala (28). 
 
This medial network maps information that is important for working memory, 
and is sensitive to motivational signals, rewards/penalties, conflict monitoring and 
error signals. These signals modulate the intensity of control by the lateral frontal 
zones (29). 
 
A fundamental function of this network may be to learn to predict outcomes (e.g. 
action-outcomes in FPCNB) given the representations maintained in working 
memory networks. This could happen in a hierarchical way, with a ‘diagonal’ cascade 
of rostral-to-caudal ( ‘top down’) signals between embedded WM workspaces (see 
above) and their adjacent medial saliency/motivation zones. Conversely, ‘bottom up’ 
performance feedback reverses these dynamics with prediction errors motivationally 
updating WM content and dorsomedial PFC outcome predictions in the opposite 
direction (30, 31). 
 

 
 

Alexander & Brown (2015) (31) 

 
 
These 5 Principles and their associated brain networks and executive functions are 
the basis of the cognitive training apps that are being developed at Cambridge 
Mindware Lab. 
  

https://www.cell.com/neuron/fulltext/S0896-6273(11)00792-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0896627311007926%3Fshowall%3Dtrue
https://www.ncbi.nlm.nih.gov/pubmed/19503087/
https://www.ncbi.nlm.nih.gov/pubmed/21926982/
https://www.ncbi.nlm.nih.gov/pubmed/26378874/
https://www.ncbi.nlm.nih.gov/pubmed/26378874/
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P3. Executive Processes = g   
 
The frontoparietal networks have a ‘multiple-demand network’ architecture (32) 
supporting diverse cognitive demands associated with standard tests of fluid 
intelligence (Gf) as well as working memory (WM). 
 
Numerous factor analytic studies have demonstrated a strong association between 
individual differences in WM ability and Gf (33, 34, 35).  
 
In understanding how to train general intelligence (g), we build on the The Parietal-
Frontal Integration Theory of Intelligence (P-FIT) (36) and Kovacs & Conway’s 
(2016) Process Overlap Theory (POT) of general intelligence (37). According to the P-
FIT model, information processing within this network during IQ demanding tasks is 
directly related to individual differences in general intelligence (g). Differences in the 
functioning of this network underlie differences in IQ test scores. 
 
According to POT intelligence (g) is explained by an interaction of domain general 
executive processes (represented by the black dots in the model below), as well as 
domain specific processes such as visuospatial (‘S’s), verbal (‘V’s).  
 

 
Process Overlap Theory (POT)  

 
It is the overlap of the same executive processes (the dots) that explains the positive 
correlations between all the different ‘broad abilities’ (or subfactors) of intelligence 
that we statistically abstract as general intelligence (g). Hence ‘process overlap’ 
theory. Tests of different broad abilities (verbal, visuospatial, etc) measure these 
executive processes and their interactions with domain-specific processes.   
 
POT theory claims that combinations of executive processes are in fact the same as 
fluid intelligence (Gf) when they are applied to solving complex and novel 

https://www.ncbi.nlm.nih.gov/pubmed/20171926?dopt=Abstract
https://www.sciencedirect.com/science/article/pii/S0160289604000030?via%3Dihub
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.542.7815&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.2688&rep=rep1&type=pdf
https://www.researchgate.net/profile/Rex_Jung/publication/6182654_The_Parieto-Frontal_Integration_Theory_P-FIT_of_intelligence_Converging_neuroimaging_evidence/links/00b4951af8512f0448000000/The-Parieto-Frontal-Integration-Theory-P-FIT-of-intelligence-Converging-neuroimaging-evidence.pdf
https://www.tandfonline.com/doi/full/10.1080/1047840X.2016.1153946
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cognitive as defined above. Our fluid intelligence is the most general-purpose, 
adaptive function of our cognition and it is very strongly correlated with general 
intelligence (g) measured by full scale IQ tests. 
 

Fluid intelligence (Gf): the ability to reason, problem solve, and to 
see patterns or relations among items. It includes both inductive 
and deductive logical reasoning. It involves being able to figure out 
the abstract relations underlying analogies. 
 

The POT model can be expanded to incorporate numerous broad factors of g as 
shown here: 
 

 
Extended POT model of g 

 
Both the P-FIT and POT theories of general intelligence imply that if brain training 
works, it should target executive processes to augment IQ. There is no general-
intelligence specific network that it should target, separate from executive processes 
such as frontoparietal working memory networks, updating/output gating or 
interference control networks. 
 
This conception of general intelligence is also largely consistent with Schneider and 
McGrew’s information processing theory of intelligence (38) as shown in the model 
below that also emphasizes the central role of working memory. This model is based 
on the well-established taxonomy of the underlying broad abilities of general 
intelligence called the CHC theory (39, 40). 
 

https://www.researchgate.net/profile/W_Schneider/publication/270585122_The_Cattell-Horn-Carroll_model_of_intelligence/links/57cac66808ae598251835314/The-Cattell-Horn-Carroll-model-of-intelligence.pdf
https://www.researchgate.net/profile/Kevin_Mcgrew3/publication/222567330_CHC_theory_and_the_Human_Cognitive_Abilities_Project_Standing_on_the_shoulders_of_the_giants_of_psychometric_intelligence_research/links/59e622abaca272553f68720f/CHC-theory-and-the-Human-Cognitive-Abilities-Project-Standing-on-the-shoulders-of-the-giants-of-psychometric-intelligence-research.pdf
https://www.slideshare.net/iapsych/chc-theory-101-from-general-intelligence-g-to-chc-theory
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I also extend the scope of general intelligence (g) beyond the CHC taxonomy and 
typical psychometric tests of IQ I to include other executive control functions such as 
cognitive control and flexibility. 
 

 

P4. Skill Specificity Principle 
 

 
Effective far-transfer cognitive training 
depends on the acquisition of novel cognitive 
routines akin to learning a new skill. These 
cognitive routines will depend on appropriate 
executive functions and their combinations (or 
‘policies’) for particular types of cognitive 
function (41, 42).  Fluid intelligence, 
crystallized intelligence, cognitive control, 
creativity, and so on, each has its own far-
transfer enabling executive processing policies. 
This is the skill specificity principle. 

 
Just as core strength or functional movement training in the gym depends on specific 
combinations of exercises in the gym to far-transfer to actual skills in sports contexts,  
the neural networks you train while brain training and the ‘policies’ that determine 
how they coordinate together need to be ‘fit for purpose’ in terms of the cognitive 
functions you want to target with training. And they need to be trained at the right 
level of abstraction for far transfer. 

https://www.sciencedirect.com/science/article/pii/S0749596X18300871
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016086/pdf/nihms962598.pdf
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A problem with classic dual n-back training that it only targets a limited number of 
executive function policies (involving maintaining and input gating), but not others 
(output gating and disengaging/shifting).  
 
Well-designed brain training apps such as our IQ Mindware apps selectively target 
the appropriate executive function policies depending on the type of far transfer you 
want. 
 
 

P5. Cross-Modal Training   
  

A problem with classic dual n-back training is that after a few sessions you become 
familiar with the task and develop game-specific strategies to help you improve your 
scores. For the DNB, these strategies may involve 'tricks' like chunking where you 
group letters or positions in the dual n-back into higher level 'units' thus reducing the 
demands you put on your limited working memory capacity. But this can defeat the 
purpose of dual n-back training where your aim is to expand working memory. 
  

Also classic dual n-back typically trains only specific types of sensory input (e.g. letter 
sounds). What is needed for more effective far transfer is to train multiple sensory 
modalities with the same domain-general (non-modality specific) executive functions 
associated with the prefrontal cortex as we have reviewed above. 
 
To triangulate on domain general executive process skills for far transfer training 
needs to switch between multiple games, where each game has very different sensory 
properties which are more peripheral to the underlying executive functions 
themselves (43). This results in more powerful far transfer effects to IQ and cognitive 
control. This is illustrated here for dual n-back training. 
  
  

 
 

Triangulating on domain-general executive function skills 

https://www.iqmindware.com/
https://psycnet.apa.org/record/2013-19654-001?doi=1
http://www.iqmindware.com/
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P6. Cognitive Resilience Training   
 
In addition to cross-modal training, IQ Mindware apps incorporate cognitive 
resilience training for the executive function skills that are trained.  
 
It is known that stress impairs executive functioning – and thus cognitive control and 
intelligence (44, 45, 46). A recent meta-analysis of relevant studies concludes: “A 
growing body of research has suggested that acute stress may impair core executive 
functions. … We found that stress impaired working memory and cognitive 
flexibility, [and] nuanced effects on inhibition” 
 
Our Cambridge Mindware Lab apps train cognitive resilience in the face of three 
types of stressors: (1) emotional threat that may be salient with anxiety, burnout or 
depression; (2) tiredness from sustained focus and effort; and (3) performance 
concerns relating to time-pressure, error-rates, or competitive environments.  
 
 

P7. Metacognitive Monitoring & Strategic Control 
 
For the importance of metacognitive monitoring and regulation I draw from 
Stanovich’s Tripartite Theory of Mind (47, 48), and Zelato’s Iterative Reprocessing 
(IR) Model of executive function development (49). 
 
According to the Tripartite Theory of Mind, cognition can be classified as either Type 
1 – automatic, effortless processing; or Type 2 – controlled, effortful processing. This 
is a common distinction found throughout cognitive psychology (System 1 vs System 
2, Fast vs Slow, etc). Type 2 processing is further subdivided into the Algorithmic 
Mind measured by Gf tests, and the Reflective Mind involving metacognition.  
 

 
 
 

https://www.ncbi.nlm.nih.gov/pubmed/27371161
https://n.neurology.org/content/91/21/e1961
https://www.researchgate.net/profile/Carmen_Sandi/publication/264297142_Stress_and_Cognition/links/5b1f5d85458515270fc48b5e/Stress-and-Cognition.pdf
http://www.keithstanovich.com/Site/Research_on_Reasoning_files/Stanovich_Two_MInds.pdf
http://keithstanovich.com/Site/Research_on_Reasoning_files/Stanovich_Oxford_Handbook.pdf
https://www.sciencedirect.com/science/article/pii/S0273229715000295?via%3Dihub
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Processing efficiency of the Algorithmic Mind in the absence of metacognition 
functions well enough for well-defined problems in both academic settings and IQ 
tests. But many open-ended problems, require the metacognition of the Reflective 
Mind – for instance, in identifying that an automatic (Type 1) response is 
inappropriate in a certain context and having the executive capacity to inhibit such a 
response, as well as apply the Algorithmic Mind using relevant knowledge, strategies 
or rules.  
 
Metacognition has both monitoring and strategic control functions that can be 
dissociated in brain imaging studies (50). The former may involve conflict or 
uncertainty monitoring and have close links with the Dorsomedial Salience Network 
(see above). The latter includes goal prioritization, cost-benefit trade-offs (explicitly 
weighing pros and cons), and epistemic regulation concerning e.g. how much 
information to collect before coming to a making a decision, how extensively to think 
about a problem before coming to a conclusion, how to calibrate the degree of 
strength of one’s opinion to the degree of evidence available, and so on. These 
functions in the Tripartite Model relate psychometric IQ to the broader constructs of 
rationality and critical thinking. 
 
I apply the principles underlying this Tripartite Model to identifying relevant far-
transfer contexts, inhibiting automatic responses, as well as managing cognitive 
resources to optimize goal satisfaction under time, cost-benefit, etc, constraints. The 
Reflective Mind enables us to satisfice in ‘bounded’ rational ways, when perfect 
optimized solutions may not be possible! (51, 52). 
 
According to Zelato’s Iterative Reprocessing (IR) model, the reflective reprocessing 
of information provides a foundation for executive function development.  For 
example, the reflective reprocessing of information prior to responding, provides a 
foundation for the control of attention, flexibly over time. Moreover, the goal-
directed modulation of attention benefits from verbal guidance and the formulation 
and maintenance in working memory of explicit action-oriented rules (49). 
 

 
 

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2004037
https://pdfs.semanticscholar.org/23a9/4ce42fe0d50f5c993f34d4c9602f8aeac507.pdf
https://link.springer.com/chapter/10.1007/978-1-349-20568-4_5
https://www.sciencedirect.com/science/article/pii/S0273229715000295?via%3Dihub
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Through development, this kind of metacognitive processing allows for increases in 
the hierarchical complexity of the rules that can be used to characterize problems 
and select context-appropriate rules for responding – thus relating the IR model to 
the principles of hierarchical executive control discussed above in the context of 
input and output gating WM circuits. 
 
I apply the principles underlying this IR Model of executive function to far transfer 
cognitive training in terms of developing higher-order executive function policies for 
a wide range of contexts.  
 
 

 
The gCODE 

 
Based on the brain training principles reviewed above, at Cambridge Mindware Lab I 
have developed an integrated paradigm for far-transfer cognitive training. I call this 
new paradigm gCODE cognitive training.  
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The gCODE Model (above & below), Mark Ashton Smith, 2019 

 
 

 
When gCODE Training for Far Transfer Works Best 

 
Assuming the Principles of cognitive training outlined above are implemented, the 
effectiveness of the training is most enhanced in the following conditions (37): 
 

1) Task complexity 
 
g loads more highly on complex tasks. gCODE training will have more far 
transfer training effects when the cognitive challenges are complex and novel - 
i.e. more fluid intelligence (Gf) demanding.   

 
 

2) Differential far transfer effects  
 
gCODE brain training will have greater far transfer effects across all cognitive 
abilities that tap the shared executive processes underlying Gf for relatively 
lower levels of cognitive ability (e.g. lower than 100 on a full-scale IQ test). For 
higher levels of ability, transfer effects will be more apparent when tasks are 
more complex and novel (such as Gf subtests). 

 
3) Multiple bottlenecks and non-additivity of executive processes 

 
Executive functioning acts as a bottleneck, and may mask individual 
differences in specific abilities. Each gCODE executive function (EF) has its 
own bottleneck, and each EF has to be functioning at an appropriate level to 
perform a cognitive task. Poor cognitive performance is often due to not being 

https://www.tandfonline.com/doi/full/10.1080/1047840X.2016.1153946
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able to cope with the executive demands of a task, regardless of any domain-
specific knowledge or skill (Gc). Thus, by targeting a pre-identified EF 
bottleneck, there may be rapid gains in terms of deployment of skill-sets or 
knowledge. 

 
4) Worst performance improvement  

 
gCODE training will have most impact on improving worst performances (e.g. 
mistakes, interference errors, lapses concentration) rather than best 
performances. It is slip-ups during many tasks that largely differentiate lower 
vs higher IQ cognitive performance. 
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II 

gCODE+ 

gCODE Support Training 
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gCODE+ Framework 
 
In addition to gCODE core computerized cognitive training, at Cambridge Mindware 
Lab we have identified a number of evidence-based supporting brain training 
strategies, depicted here in our gCODE+ Framework.  
 

 

 
 

 
1. ‘Mindware’ (Strategy) Training 

  

Stanovich defines "mindware" as "a generic label for the rules, knowledge, 
procedures, and strategies that a person can retrieve from memory in order to aid 
decision making and problem solving" (53). 
 
Rapid instructed task learning (RITL) is the ability to quickly perform novel 
instructed procedures. It depends on a transfer process from FPCNB to FPCNB: first 
through perception-action rule representations in dorsolateral PFC (dlPFC) before 
more abstract ‘task set’ representations in anterior PFC (aPFC).  Practiced task 
preparation inverts this process: higher-level rules and strategies ( ‘mindware’) 
recalled from long-term memory, in aPFC before lower-level perception-action rules 
in dlPFC (54). 
 
RITL is implemented in the brain via a ‘flexible hub’ mechanism in which top-down 
influences from the frontoparietal control networks reroute pathways among 
procedure-implementing brain areas: perceptual and motor areas (55); as reviewed 
above, frontoparietal regions are hubs and their functional connections are flexible 
across task contexts - allows for compositional coding – i.e. rapid reconfiguration 
of information flow across multiple task-relevant networks via reuse of previously 
learned sets of connectivity patterns (11, 12). 
 

https://www.jstor.org/stable/j.ctt1nq14j
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128837/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705534/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758404/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3873155/#R3
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Based on this research I propose the following hypotheses that guide Cambridge 
Mindware Labs brain training programs: 
 

1. Compositional coding via frontoparietal flexible hubs can be 
interpreted as the brain basis of Gollwitzer’s implementation 
intentions for goal-pursuit and self-regulation. Implementation 
intentions are of the form ‘if cue x occurs I shall do y’ (56). 

2. Compositional coding set at high enough levels of abstraction (see 
Zelato’s Iterative Reprocessing Model reviewed above) can aid far 
transfer between distal contexts. 

3. This insight provides a basis for combining executive function (EF) 
training with strategic implementation intention (mindware) training 
to better facilitate far transfer. 

 
The cognitive training programs I am developing at Cambridge Mindware Lab 
combine mindware tutorials with core EF training for particular g functions such as 
problem solving or decision-making to help with rapid instructed learning and help 
bridge contexts for far transfer.   
 

 

2. Brain Cross-Training ('Multi-Modal' Training) 

This type of training (sometimes called ‘multi-modal training’) augments traditional 
computer-based cognitive training with other strategies such as exercise, brain 
nutrition/nootropics, sleep adequacy, intermittent fasting, and meditation. 

For example, new neurons are generated in the adult hippocampus each day. The 
quantity cells produced can be increased by physical exercise (57). Many of these go 
through a process of programmed cell death, but their survival is enhanced through 
effortful learning (58). Based on these findings, psychologists have developed 
combined executive function and physical training programs that have proved 
effective, such as Shors’ MAP training (59).   

 

http://scholar.google.co.uk/scholar_url?url=http://kops.uni-konstanz.de/bitstream/handle/123456789/10101/99Goll_ImpInt.pdf%3Fsequence%3D1%26isAllowed%3Dy&hl=en&sa=X&scisig=AAGBfm03h2MLbw2Qxr5iNb1OD5zGuWKHyw&nossl=1&oi=scholarr
https://www.ncbi.nlm.nih.gov/pubmed/10195220/
https://journals.sagepub.com/doi/abs/10.1177/0963721414540167
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535923/#R47
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A cross-training brain training study published in the journal Intelligence in 2018 
(60) found that multi-modal training – but not fitness training alone - could 
augment fluid intelligence (Gf). 

 

The research team behind this study concluded: 

“Because fluid intelligence test scores predict real-world outcomes 
across the lifespan, boosting intelligence ability via multi-modal 
intervention that is effective even in young, healthy adults is a 
promising avenue to improve reasoning and decision making in 
daily life.”  

For another example of brain cross-training, a study found n-back accuracy (a 
measure of working memory) after post-training sleep was significantly improved 
compared training earlier in the day (61). 

At Cambridge Mindware Lab we adopt a number of cross-training strategies to 
augment cognitive training gains. 
 

 

http://www.sciencedirect.com/science/article/pii/S0160289617300818#bb0465
https://www.jneurosci.org/content/28/40/10145
https://hostedimages-cdn.aweber-static.com/ODg1NDg1/original/e44d75cccd824df5a305184b8b3b776b.png
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3. Self-Regulated Learning & Cognitive Tracking 

  

To help with training motivation and program completion, at Cambridge Mindware 
Lab we make use of evidence-based adaptations of the Expectancy-Value Theory 
(EVT) for motivation (62, 63, 64), Self-Regulated Learning (SRL) theory (65, 66, 67), 
and various known principles of gamification.  
 
According to the EVT, achievement-related task choices are motivated by 1) 
expectation for success (how will I do?), and 2) the subjective task value which 
depends on the importance of doing well, the utility value, the intrinsic value 
(enjoyment) and cost (effort/time, performance anxiety, competition with other 
goals). My own Expectancy Value Motivation Model – incorporating other relevant 
factors in addition to the expectancy-values ones - is shown here: 
 
 

 
 
According to most models in Self Regulated Learning (SRL) research there are three 
phases - 1. Planning (task analysis, planning, goal setting);  2. Performance 
monitoring (e.g. through metacognition and the use of strategies); 3. Evaluation 
(reflection and judgement of overall process, learning and adapting for future 
performance). 
 

https://www.annualreviews.org/doi/abs/10.1146/annurev.psych.53.100901.135153
https://books.google.co.uk/books/about/Motivation_in_Education.html?id=noIOAQAAMAAJ&redir_esc=y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513915/
https://www.researchgate.net/publication/316542562_A_Review_of_Self-regulated_Learning_Six_Models_and_Four_Directions_for_Research
https://www.sciencedirect.com/science/article/pii/S1041608096900229
https://books.google.co.uk/books?hl=en&lr=&id=EzWRAgAAQBAJ&oi=fnd&pg=PP1&dq=Metacognition+in+Educational+Theory+and+Practice&ots=lwFd2xCAbx&sig=mYSaPl_P_FWDoVeEgFg6uhbLWxM#v=onepage&q=Metacognition%20in%20Educational%20Theory%20and%20Practice&f=false
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Continuous feedback for performance to check against expectations is critical in this 
process, as well as valid measures of the cognitive functions that are the targets for 
far transfer. My own SRL model, incorporating what is relevant for our own training 
programs, is shown here: 
 
 

 
 

 

4. Environmental Multipliers 

Multiplier effects (68) are analogous to the so-called ‘law of attraction’. Small 
initial IQ differences (e.g. 5 IQ points) can magnify over time through ongoing 
IQ-environment feedback loops into large IQ differences. 

“...through the interplay between ability and environment, 
the advantage can evolve into something far more potent. 

https://rsrc.psychologytoday.com/files/u81/Dickens_and_Flynn__2001_.pdf
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So we have found something that acts as a multiplier.” 
Dickens & Flynn     

For instance, after cognitive training, an individual may pass an aptitude test 
that gives access to a more highly cognitive demanding educational or work 
environment. This environment over time then augments cognitive ability 
through an adaptive, neuroplasticity process. 

This two-way ability-environment multiplier process can increase the 
influence of any initial difference in ability— whether its source is genetic or 
through cognitive training. The process is a positive feedback loop and the 
multiplier trajectory of this loop can evolve over a matter of a years. This 
graph illustrates the process. Green represents periods where demands may 
exceed cognitive ability, driving plasticity changes and increased IQ. 

 

Environmental multipliers can also be defined within a ‘situated cognition’ 
framework (69) – where intelligent organization of our environment and use of apps 
and technologies can augment our cognition and executive functioning.  
 

5. Cognitive Coaching 

  

A number of studies have demonstrated that expert coaching can benefit app-based 
brain training programs. Here is one example looking at the benefits of coaching 
working memory (WM) training for spatial WM and mathematical ability (70). 

 
 

https://www.cambridge.org/core/books/cambridge-handbook-of-situated-cognition/CE574E6EFD8721290043C32F1FBD5B5F
https://www.sciencedirect.com/science/article/pii/S002839321830143X
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At Cambridge Mindware Lab we develop customized coaching programs to 
for gCODE and gCODE+ training – as reviewed in this paper.  
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